3.7.26 \(\int \frac {1}{(d+e x) (f+g x) (a+b x+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=352 \[ -\frac {2 e \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} (e f-d g) \left (a e^2-b d e+c d^2\right )}+\frac {2 g \left (2 a c g+b^2 (-g)+c x (2 c f-b g)+b c f\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} (e f-d g) \left (a g^2-b f g+c f^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{(e f-d g) \left (a e^2-b d e+c d^2\right )^{3/2}}-\frac {g^3 \tanh ^{-1}\left (\frac {-2 a g+x (2 c f-b g)+b f}{2 \sqrt {a+b x+c x^2} \sqrt {a g^2-b f g+c f^2}}\right )}{(e f-d g) \left (a g^2-b f g+c f^2\right )^{3/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.44, antiderivative size = 352, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 5, integrand size = 29, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {960, 740, 12, 724, 206} \begin {gather*} -\frac {2 e \left (2 a c e+b^2 (-e)+c x (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} (e f-d g) \left (a e^2-b d e+c d^2\right )}+\frac {2 g \left (2 a c g+b^2 (-g)+c x (2 c f-b g)+b c f\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} (e f-d g) \left (a g^2-b f g+c f^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {-2 a e+x (2 c d-b e)+b d}{2 \sqrt {a+b x+c x^2} \sqrt {a e^2-b d e+c d^2}}\right )}{(e f-d g) \left (a e^2-b d e+c d^2\right )^{3/2}}-\frac {g^3 \tanh ^{-1}\left (\frac {-2 a g+x (2 c f-b g)+b f}{2 \sqrt {a+b x+c x^2} \sqrt {a g^2-b f g+c f^2}}\right )}{(e f-d g) \left (a g^2-b f g+c f^2\right )^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((d + e*x)*(f + g*x)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*e*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*(e*f - d*g)*Sqrt[a
 + b*x + c*x^2]) + (2*g*(b*c*f - b^2*g + 2*a*c*g + c*(2*c*f - b*g)*x))/((b^2 - 4*a*c)*(e*f - d*g)*(c*f^2 - b*f
*g + a*g^2)*Sqrt[a + b*x + c*x^2]) + (e^3*ArcTanh[(b*d - 2*a*e + (2*c*d - b*e)*x)/(2*Sqrt[c*d^2 - b*d*e + a*e^
2]*Sqrt[a + b*x + c*x^2])])/((c*d^2 - b*d*e + a*e^2)^(3/2)*(e*f - d*g)) - (g^3*ArcTanh[(b*f - 2*a*g + (2*c*f -
 b*g)*x)/(2*Sqrt[c*f^2 - b*f*g + a*g^2]*Sqrt[a + b*x + c*x^2])])/((e*f - d*g)*(c*f^2 - b*f*g + a*g^2)^(3/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 740

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e
+ a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 960

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {1}{(d+e x) (f+g x) \left (a+b x+c x^2\right )^{3/2}} \, dx &=\int \left (\frac {e}{(e f-d g) (d+e x) \left (a+b x+c x^2\right )^{3/2}}-\frac {g}{(e f-d g) (f+g x) \left (a+b x+c x^2\right )^{3/2}}\right ) \, dx\\ &=\frac {e \int \frac {1}{(d+e x) \left (a+b x+c x^2\right )^{3/2}} \, dx}{e f-d g}-\frac {g \int \frac {1}{(f+g x) \left (a+b x+c x^2\right )^{3/2}} \, dx}{e f-d g}\\ &=-\frac {2 e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (e f-d g) \sqrt {a+b x+c x^2}}+\frac {2 g \left (b c f-b^2 g+2 a c g+c (2 c f-b g) x\right )}{\left (b^2-4 a c\right ) (e f-d g) \left (c f^2-b f g+a g^2\right ) \sqrt {a+b x+c x^2}}-\frac {(2 e) \int -\frac {\left (b^2-4 a c\right ) e^2}{2 (d+e x) \sqrt {a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (e f-d g)}+\frac {(2 g) \int -\frac {\left (b^2-4 a c\right ) g^2}{2 (f+g x) \sqrt {a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) (e f-d g) \left (c f^2-b f g+a g^2\right )}\\ &=-\frac {2 e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (e f-d g) \sqrt {a+b x+c x^2}}+\frac {2 g \left (b c f-b^2 g+2 a c g+c (2 c f-b g) x\right )}{\left (b^2-4 a c\right ) (e f-d g) \left (c f^2-b f g+a g^2\right ) \sqrt {a+b x+c x^2}}+\frac {e^3 \int \frac {1}{(d+e x) \sqrt {a+b x+c x^2}} \, dx}{\left (c d^2-b d e+a e^2\right ) (e f-d g)}-\frac {g^3 \int \frac {1}{(f+g x) \sqrt {a+b x+c x^2}} \, dx}{(e f-d g) \left (c f^2-b f g+a g^2\right )}\\ &=-\frac {2 e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (e f-d g) \sqrt {a+b x+c x^2}}+\frac {2 g \left (b c f-b^2 g+2 a c g+c (2 c f-b g) x\right )}{\left (b^2-4 a c\right ) (e f-d g) \left (c f^2-b f g+a g^2\right ) \sqrt {a+b x+c x^2}}-\frac {\left (2 e^3\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d^2-4 b d e+4 a e^2-x^2} \, dx,x,\frac {-b d+2 a e-(2 c d-b e) x}{\sqrt {a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right ) (e f-d g)}+\frac {\left (2 g^3\right ) \operatorname {Subst}\left (\int \frac {1}{4 c f^2-4 b f g+4 a g^2-x^2} \, dx,x,\frac {-b f+2 a g-(2 c f-b g) x}{\sqrt {a+b x+c x^2}}\right )}{(e f-d g) \left (c f^2-b f g+a g^2\right )}\\ &=-\frac {2 e \left (b c d-b^2 e+2 a c e+c (2 c d-b e) x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) (e f-d g) \sqrt {a+b x+c x^2}}+\frac {2 g \left (b c f-b^2 g+2 a c g+c (2 c f-b g) x\right )}{\left (b^2-4 a c\right ) (e f-d g) \left (c f^2-b f g+a g^2\right ) \sqrt {a+b x+c x^2}}+\frac {e^3 \tanh ^{-1}\left (\frac {b d-2 a e+(2 c d-b e) x}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x+c x^2}}\right )}{\left (c d^2-b d e+a e^2\right )^{3/2} (e f-d g)}-\frac {g^3 \tanh ^{-1}\left (\frac {b f-2 a g+(2 c f-b g) x}{2 \sqrt {c f^2-b f g+a g^2} \sqrt {a+b x+c x^2}}\right )}{(e f-d g) \left (c f^2-b f g+a g^2\right )^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.22, size = 317, normalized size = 0.90 \begin {gather*} \frac {-\frac {2 e \left (-2 c (a e+c d x)+b^2 e+b c (e x-d)\right )}{\left (b^2-4 a c\right ) \sqrt {a+x (b+c x)} \left (e (b d-a e)-c d^2\right )}+\frac {2 g \left (-2 c (a g+c f x)+b^2 g+b c (g x-f)\right )}{\left (b^2-4 a c\right ) \sqrt {a+x (b+c x)} \left (g (b f-a g)-c f^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {-2 a e+b (d-e x)+2 c d x}{2 \sqrt {a+x (b+c x)} \sqrt {e (a e-b d)+c d^2}}\right )}{\left (e (a e-b d)+c d^2\right )^{3/2}}-\frac {g^3 \tanh ^{-1}\left (\frac {-2 a g+b (f-g x)+2 c f x}{2 \sqrt {a+x (b+c x)} \sqrt {g (a g-b f)+c f^2}}\right )}{\left (g (a g-b f)+c f^2\right )^{3/2}}}{e f-d g} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((d + e*x)*(f + g*x)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

((-2*e*(b^2*e - 2*c*(a*e + c*d*x) + b*c*(-d + e*x)))/((b^2 - 4*a*c)*(-(c*d^2) + e*(b*d - a*e))*Sqrt[a + x*(b +
 c*x)]) + (2*g*(b^2*g - 2*c*(a*g + c*f*x) + b*c*(-f + g*x)))/((b^2 - 4*a*c)*(-(c*f^2) + g*(b*f - a*g))*Sqrt[a
+ x*(b + c*x)]) + (e^3*ArcTanh[(-2*a*e + 2*c*d*x + b*(d - e*x))/(2*Sqrt[c*d^2 + e*(-(b*d) + a*e)]*Sqrt[a + x*(
b + c*x)])])/(c*d^2 + e*(-(b*d) + a*e))^(3/2) - (g^3*ArcTanh[(-2*a*g + 2*c*f*x + b*(f - g*x))/(2*Sqrt[c*f^2 +
g*(-(b*f) + a*g)]*Sqrt[a + x*(b + c*x)])])/(c*f^2 + g*(-(b*f) + a*g))^(3/2))/(e*f - d*g)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 5.38, size = 463, normalized size = 1.32 \begin {gather*} -\frac {2 \left (-3 a b c e g+2 a c^2 d g+2 a c^2 e f-2 a c^2 e g x+b^3 e g-b^2 c d g-b^2 c e f+b^2 c e g x+b c^2 d f-b c^2 d g x-b c^2 e f x+2 c^3 d f x\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (-a e^2+b d e-c d^2\right ) \left (-a g^2+b f g-c f^2\right )}-\frac {2 e^3 \sqrt {-a e^2+b d e-c d^2} \tan ^{-1}\left (-\frac {e \sqrt {a+b x+c x^2}}{\sqrt {-a e^2+b d e-c d^2}}+\frac {\sqrt {c} e x}{\sqrt {-a e^2+b d e-c d^2}}+\frac {\sqrt {c} d}{\sqrt {-a e^2+b d e-c d^2}}\right )}{(d g-e f) \left (a e^2-b d e+c d^2\right )^2}-\frac {2 g^3 \sqrt {-a g^2+b f g-c f^2} \tan ^{-1}\left (-\frac {g \sqrt {a+b x+c x^2}}{\sqrt {-a g^2+b f g-c f^2}}+\frac {\sqrt {c} g x}{\sqrt {-a g^2+b f g-c f^2}}+\frac {\sqrt {c} f}{\sqrt {-a g^2+b f g-c f^2}}\right )}{(e f-d g) \left (a g^2-b f g+c f^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/((d + e*x)*(f + g*x)*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*(b*c^2*d*f - b^2*c*e*f + 2*a*c^2*e*f - b^2*c*d*g + 2*a*c^2*d*g + b^3*e*g - 3*a*b*c*e*g + 2*c^3*d*f*x - b*c
^2*e*f*x - b*c^2*d*g*x + b^2*c*e*g*x - 2*a*c^2*e*g*x))/((b^2 - 4*a*c)*(-(c*d^2) + b*d*e - a*e^2)*(-(c*f^2) + b
*f*g - a*g^2)*Sqrt[a + b*x + c*x^2]) - (2*e^3*Sqrt[-(c*d^2) + b*d*e - a*e^2]*ArcTan[(Sqrt[c]*d)/Sqrt[-(c*d^2)
+ b*d*e - a*e^2] + (Sqrt[c]*e*x)/Sqrt[-(c*d^2) + b*d*e - a*e^2] - (e*Sqrt[a + b*x + c*x^2])/Sqrt[-(c*d^2) + b*
d*e - a*e^2]])/((c*d^2 - b*d*e + a*e^2)^2*(-(e*f) + d*g)) - (2*g^3*Sqrt[-(c*f^2) + b*f*g - a*g^2]*ArcTan[(Sqrt
[c]*f)/Sqrt[-(c*f^2) + b*f*g - a*g^2] + (Sqrt[c]*g*x)/Sqrt[-(c*f^2) + b*f*g - a*g^2] - (g*Sqrt[a + b*x + c*x^2
])/Sqrt[-(c*f^2) + b*f*g - a*g^2]])/((e*f - d*g)*(c*f^2 - b*f*g + a*g^2)^2)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.02, size = 1343, normalized size = 3.82

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(3/2),x)

[Out]

1/(d*g-e*f)/(a*g^2-b*f*g+c*f^2)*g^2/((x+f/g)^2*c+(b*g-2*c*f)*(x+f/g)/g+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2)-2/(d*g-e
*f)*g^2/(a*g^2-b*f*g+c*f^2)/(4*a*c-b^2)/((x+f/g)^2*c+(b*g-2*c*f)*(x+f/g)/g+(a*g^2-b*f*g+c*f^2)/g^2)^(1/2)*x*b*
c+4/(d*g-e*f)*g/(a*g^2-b*f*g+c*f^2)/(4*a*c-b^2)/((x+f/g)^2*c+(b*g-2*c*f)*(x+f/g)/g+(a*g^2-b*f*g+c*f^2)/g^2)^(1
/2)*x*c^2*f-1/(d*g-e*f)*g^2/(a*g^2-b*f*g+c*f^2)/(4*a*c-b^2)/((x+f/g)^2*c+(b*g-2*c*f)*(x+f/g)/g+(a*g^2-b*f*g+c*
f^2)/g^2)^(1/2)*b^2+2/(d*g-e*f)*g/(a*g^2-b*f*g+c*f^2)/(4*a*c-b^2)/((x+f/g)^2*c+(b*g-2*c*f)*(x+f/g)/g+(a*g^2-b*
f*g+c*f^2)/g^2)^(1/2)*b*c*f-1/(d*g-e*f)/(a*g^2-b*f*g+c*f^2)*g^2/((a*g^2-b*f*g+c*f^2)/g^2)^(1/2)*ln(((b*g-2*c*f
)*(x+f/g)/g+2*(a*g^2-b*f*g+c*f^2)/g^2+2*((a*g^2-b*f*g+c*f^2)/g^2)^(1/2)*((x+f/g)^2*c+(b*g-2*c*f)*(x+f/g)/g+(a*
g^2-b*f*g+c*f^2)/g^2)^(1/2))/(x+f/g))-1/(d*g-e*f)/(a*e^2-b*d*e+c*d^2)*e^2/((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(
a*e^2-b*d*e+c*d^2)/e^2)^(1/2)+2/(d*g-e*f)*e^2/(a*e^2-b*d*e+c*d^2)/(4*a*c-b^2)/((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)
/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*b*c-4/(d*g-e*f)*e/(a*e^2-b*d*e+c*d^2)/(4*a*c-b^2)/((x+d/e)^2*c+(b*e-2*c*d)
*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*x*c^2*d+1/(d*g-e*f)*e^2/(a*e^2-b*d*e+c*d^2)/(4*a*c-b^2)/((x+d/e)^2*c
+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b^2-2/(d*g-e*f)*e/(a*e^2-b*d*e+c*d^2)/(4*a*c-b^2)/((x+d/
e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*b*c*d+1/(d*g-e*f)/(a*e^2-b*d*e+c*d^2)*e^2/((a*e^2-
b*d*e+c*d^2)/e^2)^(1/2)*ln(((b*e-2*c*d)*(x+d/e)/e+2*(a*e^2-b*d*e+c*d^2)/e^2+2*((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*
((x+d/e)^2*c+(b*e-2*c*d)*(x+d/e)/e+(a*e^2-b*d*e+c*d^2)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{{\left (c x^{2} + b x + a\right )}^{\frac {3}{2}} {\left (e x + d\right )} {\left (g x + f\right )}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x^2+b*x+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + b*x + a)^(3/2)*(e*x + d)*(g*x + f)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\left (f+g\,x\right )\,\left (d+e\,x\right )\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((f + g*x)*(d + e*x)*(a + b*x + c*x^2)^(3/2)),x)

[Out]

int(1/((f + g*x)*(d + e*x)*(a + b*x + c*x^2)^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (d + e x\right ) \left (f + g x\right ) \left (a + b x + c x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)/(g*x+f)/(c*x**2+b*x+a)**(3/2),x)

[Out]

Integral(1/((d + e*x)*(f + g*x)*(a + b*x + c*x**2)**(3/2)), x)

________________________________________________________________________________________